
Authentication Endpoints (v1)

NOTE: Each API request must be authorized with API key (unless particular endpoint's name says

that it's public). In order to authorize your requests "Authorization" header must be set and should

contain a valid API key.

Check Key (public)

Checks if specified api key is valid

• URL

/api/v1/auth/check/key

• Method:

POST

• Data Params

Required:

key=[string]

• Response Examples:

o Code: 200

Content:

{
 "msg": "API key is valid",
 "error": 0,
 "user": {
 "id": 1,
 "email": "email@gmail.com",
 "first_name": "John",
 "last_name": "Doe",
 "is_active": 0,
 "last_login": "2017-05-03 17:30:17",
 "subscription_start": "2017-02-11 01:40:49",
 "subscription_end": "2027-02-11 01:40:49",
 "rollback_level": "users",
 "created_at": "2017-02-14 05:40:02",
 "updated_at": "2017-05-03 17:30:17",
 "roles": [
 {
 "id": 1,
 "slug": "users",
 "name": "Users",
 "permissions": {
 "limit_accounts": "1000",
 "limit_posts": "1000",
 "limit_campaigns": "1000",

 "admin": true,
 "recurring": false,
 "recurring_period": 0,
 "allow_tiered": true,
 "allow_sharing": true
 },
 "created_at": "2017-02-08 22:56:34",
 "updated_at": "2017-04-21 03:38:49",
 }
]
 }
}

• Code: 401

Content: {"msg":"Key is invalid","error": 1}

Check Credentials

Checks if specified credentials are matching our records

• URL

/api/v1/auth/check/credentials

• Method:

POST

• Data Params

Required:

email=[string]
password=[string]

• Response Examples:

o Code: 200

Content:

{
 "msg": "Credentials are valid",
 "error": 0,
 "user": {
 "id": 1,
 "email": "email@gmail.com",
 "first_name": "John",
 "last_name": "Doe",
 "is_active": 0,
 "last_login": "2017-05-03 17:30:17",
 "subscription_start": "2017-02-11 01:40:49",
 "subscription_end": "2027-02-11 01:40:49",
 "rollback_level": "users",
 "created_at": "2017-02-14 05:40:02",

 "updated_at": "2017-05-03 17:30:17",
 "roles": [
 {
 "id": 1,
 "slug": "users",
 "name": "Users",
 "permissions": {
 "limit_accounts": "1000",
 "limit_posts": "1000",
 "limit_campaigns": "1000",
 "admin": true,
 "recurring": false,
 "recurring_period": 0,
 "allow_tiered": true,
 "allow_sharing": true
 },
 "created_at": "2017-02-08 22:56:34",
 "updated_at": "2017-04-21 03:38:49",
 }
]
 }
}

• Code: 401

Content: {"msg":"Bad credentials","error": 1, "user": []}

Accounts Endpoints (v1)

List

Get all accounts belonging to currently authorized user

• URL

/api/v1/accounts/list

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Ok ",
 "error": 0,
 "data": [
 {
 "id": 79,
 "owner_id": 1,

 "service_id": 4,
 "name": "Twitter Account",
 "post_to": null,
 "login": null,
 "password": null,
 "secret": "McwAS1tsdCK2ARjSq5YSjS4gQjEjVX5oEZaKwjc3r5ObI",
 "access_token": "2064670406-F3MQtVbfxsOzYjfwefzn9uCSqtbYgUnC1ju9hHC",
 "refresh_token": null,
 "token_expires": "2027-03-03 00:28:05",
 "is_active": 1,
 "created_at": "2017-03-03 00:27:58",
 "updated_at": "2017-03-09 04:41:46",
 "service": {
 "id": 4,
 "name": "Twitter",
 "type": "social",
 "auth_type": "oauth",
 "post_to_required": 0,
 "post_to_type": null,
 "class": "App\\Engine\\Services\\Twitter",
 "is_active": 1,
 "selfhosted": 0,
 "updated_at": "2017-03-31 14:57:26",
 "created_at": "2017-02-12 00:00:00"
 }
 }
]
}

Campaigns Endpoints (v1)

Campaign Creation Process

Campaign creation consists of 3 separate steps.

Step 1

Create campaign using "create" endpoint below and store returned campaign id.

Step 2

Use "fields" endpoint to get list of all fields that's required for this particular campaign (optional

fields list can be found under "finalize" endpoint)

Step 3

Complete campaign creation process by making request to "finalize" endpoint with all the fields

we've retrieved on the previous step properly filled.

List

Fetches all campaigns that belongs to currently authorized user

• URL

/api/v1/campaigns/list

• Method:

GET

• Data Params

None

• Response Examples:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 {
 "id": 37,
 "owner_id": 1,
 "name": "Test Campaign",
 "starts_at": null,
 "target": "group",
 "target_id": 23,
 "dripping": null,
 "dripping_limit": null,
 "randomized_limit": null,
 "randomized_at": null,
 "is_paused": 0,
 "is_locked": 0,
 "is_completed": 0,
 "is_failed": 0,
 "updated_at": "2017-04-18 02:50:17",
 "created_at": "2017-04-18 02:50:17"
 }

• Code: 200

Content:

{
 "msg": "No campaigns found",
 "error": 0,
 "data": []
}

Create

Create a new syndication campaign

• URL

/api/v1/campaigns/create

• Method:

POST

• Data Params

Required:

name=[string]
target=[group|account|tiers]

target_id=[int] (id of group or account you want to assign to the campaign, not applicable for tiered campaigns

groups=[array] (array of group ids order of which represents tiers order, only applicable for target=tiers)

Optional:

ignore=[video|social|blog|bookmark] (skip accounts of specified type on campaign creation)
dripping=[per_day|days_total|weeks_total]

dripping_limit=[int] (not applicable for dripping=per_day)

dripping_limit_from=[int] (only applicable for dripping=per_day)

dripping_limit_to=[int] (only applicable for dripping=per_day)

• Response Examples:

o Code: 200

Content:

{
 "msg": "Campaign was successfully created",
 "error": 0,
 "errors": [],
 "data": {
 "id": 38
 }
}

• Code: 401

Content:

{
 "msg": "Validation failed",
 "error": 1,
 "errors": {
 "target": [
 "The target field is required."
],
 "target_id": [
 "The target id field is required."
]
 },
 "data": []
}

Types

Get all post types used in specified campaign

• URL

/api/v1/campaigns/:id/types

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 "blog",
 "social"
]
}

Fields

Get all fields required to finalize specified campaign

• URL

/api/v1/campaigns/:id/fields

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 "title_blog",
 "content_blog",
 "tags_blog"
]
}

Finalize

Last step in campaign creation process. Finalize campaign creation by supplying all the fields

required by this specific campaign's services

• URL

/api/v1/campaigns/:id/finalize

• Method:

POST

• Data Params

Required:

file_video=[file] (for campaigns containing accounts with type of "video")

title_video=[string] (for campaigns containing accounts with type of "video")

content_video=[string] (for campaigns containing accounts with type of "video")

tags_video=[string] (comma separated, for campaigns containing accounts with type of "video")

category_video=[string] (for campaigns containing accounts with type of "video")

title_blog=[string] (for campaigns containing accounts with type of "blog")

content_blog=[string] (for campaigns containing accounts with type of "blog")

tags_blog=[string] (comma separated, for campaigns containing accounts with type of "blog")

content_social=[string] (for campaigns containing accounts with type of "social")

content_bookmark=[string] (for campaigns containing accounts with type of "bookmark")

tags_bookmark=[string] (comma separated, for campaigns containing accounts with type of "bookmark")

title_bookmark=[string] (for campaigns containing accounts with type of "bookmark")

url_bookmark=[string] (for campaigns containing accounts with type of "bookmark")

Optional:

starts_at=[datetime] (no need to use it if you want campaign to start right away)

image_blog=[file] (for campaigns containing accounts with type of "blog")

image_bookmark=[file] (for campaigns containing accounts with type of "bookmark")

video_embed_blog (for campaigns containing accounts with type of "blog")

• Response Example:

o Code: 200

Content:

{
 "msg": "Campaign was successfully finalized",
 "error": 0,
 "errors": [],
}

Edit

Edit specified existing campaign

• URL

/api/v1/campaigns/:id/edit

• Method:

POST

• Data Params

Optional:

starts_at=[datetime] (can be changed only if campaign has not started yet)
name=[string]

• Response Example:

o Code: 200

Content:

{
 "msg": "Campaign was successfully updated",
 "error": 0,
 "errors": [],
}

Get

Get all the information about specified campaign (including accounts, files and posts)

• URL

/api/v1/campaigns/:id/get

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": {
 "status": "Required fields are missing",
 "campaign": {
 "id": 38,
 "owner_id": 1,
 "name": "Api Campaign",
 "starts_at": null,
 "target": "account",
 "target_id": 83,
 "dripping": null,
 "dripping_limit": null,
 "randomized_limit": null,
 "randomized_at": null,
 "is_paused": 0,
 "is_locked": 0,
 "is_completed": 0,
 "is_failed": 0,
 "updated_at": "2017-04-18 06:20:13",
 "created_at": "2017-04-18 06:20:13",
 "accounts": [
 {
 "id": 83,
 "owner_id": 1,
 "service_id": 7,
 "name": "Wordpress.org Account",
 "post_to": "http://localhost/wordpress",
 "login": "user",
 "password": "user",
 "secret": null,
 "access_token": null,
 "refresh_token": null,
 "token_expires": null,
 "is_active": 1,
 "created_at": "2017-03-03 01:43:28",
 "updated_at": "2017-03-09 05:04:46",
 "pivot": {
 "campaign_id": 38,
 "account_id": 83,
 "success": 0,
 "attempts": 0,

 "attempted_at": null
 }
 }
]
 },
 "accounts_syndicated": [],
 "accounts_pending": [],
 "accounts_failed": [],
 "total_syndications_count": 1,
 "successful_syndications_count": 0,
 "pending_syndications_count": 0,
 "failed_syndications_count": 0,
 "posts": [],
 "files": []
 }
}

Pause

Pauses specified campaign

• URL

/api/v1/campaigns/:id/pause

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Campaign is now paused",
 "error": 0
}

Resume

Resume specified campaign

• URL

/api/v1/campaigns/:id/resume

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Campaign successfully resumed",
 "error": 0
}

Delete

Delete specified campaign

• URL

/api/v1/campaigns/:id/delete

• Method:

GET

• Data Params

None

• Response Example:

o Code: 200

Content:

{
 "msg": "Campaign was successfully deleted",
 "error": 0
}

Groups Endpoints (v1)

List

Fetches all groups (and their assigned accounts) that belongs to currently authorized user

• URL

/api/v1/groups/list

• Method:

GET

• Data Params

None

• Response Examples:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 {
 "id": 1,
 "name": "Group 1",
 "owner_id": 1,
 "updated_at": "2017-04-16 06:40:59",
 "created_at": "2017-03-11 23:43:26",
 "accounts": []
 },
 {
 "id": 2,
 "name": "Group 2",
 "owner_id": 1,
 "updated_at": "2017-04-11 03:25:48",
 "created_at": "2017-04-11 03:25:48",
 "accounts": []
 }
]
}

• Code: 200

Content:

{
 "msg": "User doesn't have groups",
 "error": 0,
 "data": []
}

Create

Create a new accounts group

• URL

/api/v1/groups/create

• Method:

POST

• Data Params

Required:

name=[string]

• Response Example:

o Code: 200

Content:

{
 "msg": "Group successfully created",
 "error": 0,
 "errors": [],
 "data": {
 "id": 30
 }
}

Edit

Edit specified group

• URL

/api/v1/groups/:id/edit

• Method:

POST

• Data Params

Required:

name=[string]

• Sample Response:

o Code: 200

Content:

{
 "msg": "Group successfully updated",
 "error": 0,
 "errors": []
}

Get

Fetches specified group along with its assigned accounts

• URL

/api/v1/groups/:id/get

• Method:

GET

• Sample Response:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": {
 "group": {
 "id": 30,
 "name": "Group 1",
 "owner_id": 1,
 "updated_at": "2017-04-18 05:23:03",
 "created_at": "2017-04-18 05:23:03",
 "accounts": []
 },
 "accounts": []
 }
}

Delete

Deletes specified group

• URL

/api/v1/groups/:id/delete

• Method:

GET

• Sample Response:

o Code: 200

Content:

{
 "msg": "Group was successfully deleted",
 "error": 0
}

Account Assign

Assign account to group

• URL

/api/v1/groups/:id/account/assign

• Method:

POST

• Data Params

Required:

account_id=[int]

• Response Examples:

o Code: 200

Content:

{
 "msg": "Account was successfully assigned to the group",
 "error": 0,
 "errors": []
}

• Code: 401

Content:

{
 "msg": "Validator failed",
 "error": 1,
 "errors": {
 "account_id": [
 "The account id field is required."
]

 }
}

Accounts Assign

Assign multiple accounts to group

• URL

/api/v1/groups/:id/accounts/assign

• Method:

POST

• Data Params

Required:

accounts=[array]

(account ids)

• Response Examples:

o Code: 200

Content:

{
 "msg": "Accounts were successfully assigned to the group",
 "error": 0,
 "errors": []
}

• Code: 401

Content:

{
 "msg": "Validator failed",
 "error": 1,
 "errors": {
 "account_id": [
 "The accounts field is required."
]
 }
}

Account Unassign

Unassign account from group

• URL

/api/v1/groups/:id/account/unassign

• Method:

POST

• Data Params

Required:

account_id=[int]

• Response Examples:

o Code: 200

Content:

{
 "msg": "Account was successfully un-assigned from the group",
 "error": 0,
 "errors": []
}

• Code: 401

Content:

{
 "msg": "Validator failed",
 "error": 1,
 "errors": {
 "account_id": [
 "The account_id field is required."
]
 }
}

Syndications Endpoints (v1)

All

Fetches all syndications for currently authorized user

• URL

/api/v1/syndications/all

• Method:

GET

• Data Params

None

• Response Examples:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 {
 "id": 89,
 "campaign_id": 37,
 "account_id": 85,
 "tier_id": null,
 "attempts": 0,
 "success": 0,
 "skipped": 0,
 "attempted_at": null,
 "post_id": null,
 "post_url": null,
 "updated_at": "2017-04-18 02:50:17",
 "created_at": "2017-04-18 02:50:17"
 }
]
}

• Code: 200

Content:

{
 "msg": "You don't have any syndications",
 "error": 0,
 "data": []
}

Pending

Fetches pending syndications for currently authorized user

• URL

/api/v1/syndications/pending

• Method:

GET

• Data Params

None

• Response Examples:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 {
 "id": 89,
 "campaign_id": 37,
 "account_id": 85,
 "tier_id": null,
 "attempts": 0,
 "success": 0,
 "skipped": 0,
 "attempted_at": null,
 "post_id": null,
 "post_url": null,
 "updated_at": "2017-04-18 02:50:17",
 "created_at": "2017-04-18 02:50:17"
 }
]
}

• Code: 200

Content:

{
 "msg": "You don't have any pending syndications",
 "error": 0,
 "data": []
}

Failed

Fetches failed syndications for currently authorized user

• URL

/api/v1/syndications/failed

• Method:

GET

• Data Params

None

• Response Examples:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 {
 "id": 89,
 "campaign_id": 37,
 "account_id": 85,
 "tier_id": null,
 "attempts": 0,
 "success": 0,
 "skipped": 0,
 "attempted_at": null,
 "post_id": null,
 "post_url": null,
 "updated_at": "2017-04-18 02:50:17",
 "created_at": "2017-04-18 02:50:17"
 }
]
}

• Code: 200

Content:

{
 "msg": "You don't have any failed syndications",
 "error": 0,
 "data": []
}

Successful

Fetches successful syndications for currently authorized user

• URL

/api/v1/syndications/successful

• Method:

GET

• Data Params

None

• Response Examples:

o Code: 200

Content:

{
 "msg": "Ok",
 "error": 0,
 "data": [
 {
 "id": 89,
 "campaign_id": 37,
 "account_id": 85,
 "tier_id": null,
 "attempts": 0,
 "success": 0,
 "skipped": 0,
 "attempted_at": null,
 "post_id": null,
 "post_url": null,
 "updated_at": "2017-04-18 02:50:17",
 "created_at": "2017-04-18 02:50:17"
 }
]
}

• Code: 200

Content:

{
 "msg": "You don't have any successful syndications yet",
 "error": 0,
 "data": []
}

